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Exact results on the dimerisation transition in SU(n) 
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Canadian Institute for Advanced Research and Physics Department, University of British 
Columbia, Vancouver, BC V6T 2A6, Canada 

Received 16 May 1989 

Abstract. We show that SU(n) antiferromagnetic chains (or equivalently SU(2) spin-s chains 
with Hamiltonians which project out singlet states) are exactly equivalent to the n2-state 
quantum Potts chain (obtained from the transfer matrix for the ZD classical Potts model), for 
arbitrary n (or s with n = 2s + 1). This implies that the models are spontaneously dimerised 
with a finite gap for n < 2 but have a unique ground state and vanishing gap for n < 2. The 
n + 0 limit may have some bearing on the quantum-Hall-effect localisation transition. 

1. Introduction 

The ordinary s = 2 Heisenberg Hamiltonian 

H = i u l  

can be written as a permutation operator: 

( H  + Q ) / " P )  = alp") 

where a, /3 take on the values 1 and 2 and label the S' eigen-states on two neighbouring 
sites. Alternatively, we may make a 'particle-hole transformation', defining 

I,) = E,p /P)  

on the even sub-lattice. (Here repeated indices are summed from 1 to 2. is the 
antisymmetric tensor with e12 = 1.) Shifting H by a constant, it then becomes an annihil- 
ation operator: 

HI" p )  = -46" p 1'' v ) .  

is the Kronecker 6 function.) The meaning of this becomes transparent if we 
represent the Heisenberg operators the way they arise in nature: in terms of electron 
operators. Letting VL, annihilate an electron of spin LY on the ith site, the original form 
of H is 

H + Q ~ = B V + I " V ~ ~ V + ~ ~ V Z ,  
and the second form is obtain by the particle-hole transformation, q2,+ qiZa, so that 

H = -iy+ " ~ J ~ ~ ~ + ~ , I / J ~ P  + constant. 

In the first form H permutes a pair of electrons. In the second it annihilates a particle- 
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1 2 3  4 1 2 3  4 

Figure 1. The two valence-bond states for four sites. 

hole pair with the same spin and creates a new pair with the same spin. These electron 
Hamiltonians are equivalent to the s = 4 Heisenberg Hamiltonian if we restrict the 
number of electrons to be one on each site (or equivalently one hole on the even site.) 

There are obvious generalisations with SU(n) symmetry for H written in either form: 
we simply let the indices run over n values rather than 2. The two generalisations are 
inequivalent for n > 2 because in the particle-particle case we have one particle on 
the even site and in the particle-hole case we have one hole or n - 1 particles. The 
representation of SU(n) on the odd site is the fundamental representation in both cases; 
that on the even site is the fundamental or anti-fundamental for the particle or hole case. 

Both generalisations can be thought of as ordinary SU(2) spin-s antiferromagnets, 
where n = 2s + 1, the number of spin components, but with special Hamiltonians of 
higher (SU(n)) symmetry. The nature of these Hamiltonians is most easily understood 
by writing H in terms of projection operators onto the total spin on the pair of sites. In 
the particle-hole case H becomes: 

H = -P0(S1 + S , )  

i.e. the energy is (-1) if the two spins are in a singlet state and is zero for all other 
possible spins, 1, 2, . . ., 2s. Note that this Hamiltonian has SU(n) symmetry because 
the n different S' eigen-states are all treated equally by H. Explicitly, H can be written 

2s 

H = - rI {[-(S1 + S2I2 + j ( j  + 1)1/Aj + 111. 
]=1  

For n = 3 it is simply the pure biquadratic model, 

H = -(s1 - S2), + constant. 

The particle-particle generalisation was solved by the Bethe ansatz [l] in the one- 
dimensional case; it has vanishing gap and power-law correlations like the s = 4 case. 
The particle-hole generalisation was also shown to be Bethe-ansatz integrable [l]. It 
was shown to have a simple spectrum in the large-n limit in reference [2]. 

To see this it is convenient to introduce the valence-bond basis [2]. An arbitrary 
SU(n) singlet state is obtained by pair-wise contracting upper and lower indices. For 
instance, for four sites there are two possible contractions: 

l",pp) l " p p E ) *  

(Repeated lower case Greek indices are summed from 1 to n throughout this paper.) 
These are represented by diagrams with lines connecting the contracted sites, as in figure 
1. The valence-bond states form a complete basis of SU(n) singlets. 

(This follows from the fact that the only two invariant tensors for SU(n) are the 
Kronecker delta function, Sup, and the Levi-Civita antisymmetric tensor: ~ ~ 1 ~ 2  . . = a .  

Contractions involving the E tensor can always be rewritten in terms of the deltas using: 

where the sum is over all permutations.) 
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H,, ( - - ) = (-I/n) ( - )  

1 2  3 4 1 2  3 4  

Figure 2. Diagrammatic definition of antiferromagnetic Hamiltonian on the valence-bond 
basis. 

1 2 3 4 5 6  7 8 

Figure 3. The two ground states in the large-n limit 

Figure 4. A valence-bond state with a longer bond. Note that there is one less nearest- 
neighbour valence bond than in figure 3. 

The action of H on the valence-bond basis can be written in a simple diagrammatic 
way. It is convenient to normalise H so that 

H l " p )  = (-l /n)d" p l y y ) .  

HI".) = -I",). 
Thus a link containing a valence bond is an eigen-state with eigenvalue - 1: 

Now let us consider the action of H o n  a link not containing a valence bond. For instance, 
the action of H23, the term coupling the second and third sites, on the state with 12 and 
34 valence bonds is: 

H 2 3 l a n P p )  = -(l/n>i"pPa). 
We obtain the state with 14 and 23 valence bonds, with amplitude l / n .  These two simple 
rules are represented diagrammatically in figure 2. They completely define the action of 
H o n  any valence-bond state since sites 1 and 4 in the above equation need not be nearest 
neighbours of sites 2 and 3. We see that as n increases the amplitude for valence bonds 
to 'resonate' goes to zero like l /n.  The reason for this is that a neighbouring particle and 
hole in different valence bonds will have the same index (and so be able to annihilate 
each other) only 1/n of the time. It is easy to see that, at large n ,  the two ground states 
will be approximately the two nearest-neighbour dimer configurations, drawn in figure 
3.  These states have energy - L ,  for a chain of 2 L  sites with periodic boundary conditions. 
All off-diagonal matrix elements of H are O(l /n ) .  All other singlet states are missing at 
least one nearest-neighbour valence bond (as in figure 4) .  Thus their energy is larger by 
at least 1 + O ( l / n ) .  Likewise, non-SU(n) singlets have some uncontracted indices and 
also have energies larger by 1 + O(l/n) (as in figure 5 ,  in which broken lines denote 
uncontracted indices). Thus at large n the symmetry of translation by one site is spon- 
taneously broken, and there is a finite gap. On the other hand, when n = 2 the ground 
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Figure 5. A non-singlet state with uncontracted indices represented by broken lines. Note 
that there is one less nearest-neighbour valence bond than in figure 3. 

state is known to have full translational symmetry and zero gap from the Bethe ansatz. 
There must be a dimerisation transition at some critical value of n ,  n, 3 2. There is no a 
priori reason why n, must be an integer; we can equally well define the model on the 
valence-bond states for any real n. A numerical investigation of this question was made 
in reference [3] for chains of length up to 26. There was clear evidence of a phase 
transition with a value of n, around two or three. 

The n = 3 case, corresponding to the pure biquadratic spin-l chain, has been the 
subject of fairly extensive discussion in the context of the general bilinear-biquadratic 
chain: 

H =   COS osi +sin @(si 
i 

The physical case, 6 = 0, has been argued to have a gap and a unique ground state [4]. 
The 6 = tan-’(1/3) case was solved exactly (in terms of ‘double valence bonds’) and 
proven to have this property [5]. The 6 = -n/4 model is solvable using the Bethe ansatz 
and has vanishing gap and a unique ground state [6]. It was conjectured [7] that 6 = 
-n/4 represents a critical point separating undimerised (6 > -n/4) and dimerised 
(- 8 < n/4) phases with gaps. This was supported by simple variational ground states 
of the two types [SI, A critical theory of the phase transition, involving the k = 2 Wess- 
Zumino-Witten non-linear 0 model was developed [7], and shown [8] to give exact 
agreement with critical indices extracted from the Bethe ansatz solution [6] at 8 = 
-n/4. Numerical investigations of this conjecture [9, 31 have tended to show the gap 
first vanishing near the point -n/4 as it is approached from above, and dimerisation 
commencing at about this point, but with a zero or very small gap in the dimerised region 
right up to 6 = -n/2, the pure biquadratic model. 

A breakthrough in the n = 3 case was obtained recently, building on earlier work of 
Parkinson [lo], by Barber and Batchelor [ l l ] .  They argued that this model is exactly 
equivalent to the 9-state quantum Potts chain and hence has a spontaneously dimerised 
ground state. They were furthermore able to obtain exact results on the spectrum using 
the mapping of the Potts chain onto the s = 4 xxz spin chain. (Their results also imply 
the integrability of the model, but this was already established in reference [l].) As will 
be shown in § 3, this mapping holds for all n ,  the SU(n) antiferromagnet being equivalent 
to the n2-state Potts model. In the next section we will discuss how this mapping works 
in qualitative terms and what it implies for the antiferromagnet. In § 3 we give a 
partial proof of the mapping. We first show that the two problems both obey the same 
Temperley-Lieb algebra [12] with operators of the same dimension. We then show the 
mapping is exact for four sites. Finally we show it is exact for an arbitrary number of 
sites in the SU(n) singlet sector. 

2. Mapping onto the Potts model 

Following reference [ll], where the n = 3 case was considered, we consider the more 
general SU(n) model with alternating interaction strength andfree boundary conditions 
on a chain of length 2L: 
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where E -  = 1 and E ,  = A. 

action between 'spins' taking on q values s = 1,2 ,3 ,  . . . , q of the form: 
The q-state Potts model has a classical Hamiltonian with a nearest-neighbour inter- 

From the transfer matrix of the two-dimensional Potts model one can obtain [13] a 
corresponding one-dimensional quantum Hamiltonian: 

L q - 1  L - 1  q - 1  

(In [11] the summation index k runs from 1 to (q  - 1) only. This simply corresponds to 
shifting H by a constant (1 + A ) / q .  We have also divided H by a factor of q relative to 
the normalisation in [ l l ] . )  If we work in the classical Potts basis, we diagonalise the Ri: 

R = diag (exp(i2n/q), exp(i4n/q), exp(i6n/q), . . . , exp(iq2n/q)). 

In this basis the second term in H becomes 
L - 1  

HP = -A c 4jsi+I. 
i = l  

The si are the 'Potts spin' indices (labelling eigen-states of the R i )  and 6,,,, is the 
Kronecker delta function. Q then looks like a transverse field, Q = M ,  which shifts the 
Potts spin index by one: 

MsY = 4 ( s ' + l ) .  

(We identify s + q with s.) We will refer to the first term as H,, and the second as Hp. 
We may alternatively diagonalise the first term: 

q-1  

Hf = - (1/q)  2 ( Q i ) k  + diag(-1,0, 0,  . . ., 0)  
k = O  

The Potts term then is non-diagonal with R = M ,  i.e. the Potts spin indices on neigh- 
bouring sites are shifted in opposite directions by k ,  with k = 0 , 1 , 2 ,  . . . , ( q  - 1). 

The Potts model is known to have an ordered phase for A > 1 (corresponding to 
T < T, in the classical problem). At  large A the Potts spins are essentially equal on all 
sites (up to small quantum fluctuations). For A < 1 the system is disordered. For very 
small A each site is essentially decoupled and will be in the state of eigenvalue - 1, which 
is the symmetric sum over the q Potts spin states. This phase transition is known to be 
second order for q < 4 and first order for q > 4 [14]. 

The connection with the antiferromagnet is easy to understand for L = 1. The 
antiferromagnet has two sites and n2 states. One is the SU(n) singlet, I n a ) ,  energy -1. 
The other n2 - 1 are the adjoint representation of SU(n): T,Plnp), where the matrix Tis 
traceless. These all have energy0. Labelling the H,eigen-states by a capital Greek index, 
]A), where A runs from 0 to q - 1, we see that 10) corresponds to the SU(n) singlet, and 
IA), for A = 1,2 ,  . . . , q - 1, correspond to the adjoint representation states. (We will 
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Figure 6.  The identification of the Potts and field terms in the quantum Potts Hamiltonian 
with the links in the antiferromagnetic Hamiltonian. 

let Arabic letters generally run over this restricted range.) For a longer Potts chain of 
length L ,  the field terms correspond to the antiferromagnet couplings with the odd site 
on the left: 

and the Potts terms correspond to the other half of the antiferromagnetic couplings: 

(see figure 6). Thus we see that the disordered phase where Hf is diagonalised separately 
on each site must correspond to the simple dimer state (figure 2, state a) with valence 
bonds between sites 2i - 1 and 2i. On the other hand (and less obviously) the ordered 
state, where we diagonalise all the Potts terms must correspond to the other nearest- 
neighbour dimer state (figure 2, state b). There is a duality transformation in the Potts 
model which maps the ordered and disordered states into each other at A = 1: 

(R,+1/2’)k = n (Q,Y ( Q ~ + ~ , * , ) ~  = R,  k ~ r + l  ( q - k ) .  
] S I  

Likewise, the two dimerisations of the antiferromagnet are equivalent. (Actually, both 
these statements are only true in the infinite length limit, for chains with free boundaries.) 
Since the Potts transition is first order at q > 4, the ordered and disordered ground states 
coexist as distinct degenerate states at A = 1 in this case. This means that the SU(n) chain 
has two ground states at A = 1 for n > 2; i.e. it is spontaneously dimerised. On the other 
hand, since the Potts transition is second order for q < 4, the two ground states become 
the same at A = 1, so the SU(n) system is undimerised for n S 2. Furthermore, eigen- 
states of the Potts Hamiltonian can be obtained from an exact mapping [12] onto the 
s = f xxz model; q > 4 (q  < 4) corresponding to Ising (xy) anisotropy. Bethe ansatz 
results on the excitation spectrum [ 151 together with well established field-theory results 
on the correlation functions [ 161 imply that the model has a finite gap and correlation 
length for q > 4 but vanishing gap and power-law correlations for q 6 4. Thus we 
conclude that n, = 2 for the SU(n) antiferromagnet and the conjecture [7] about the gap 
in the dimerised phase was correct for the n = 3 biquadratic spin-1 model. The exact 
results on the Potts spectrum show [ l l ]  that the gap is in fact very small for n = 3, about 
0.06, explaining the difficulty with the numerical work. 

This result represents, to our knowledge, the first exact solution of an SU(n) invariant 
antiferromagnet for fractional n. As such, it may be a step towards finding the exact 
critical exponents for the quantum-Hall-effect localisation transition. It has been argued 
that the critical theory for this transition is a (1 + 1)-dimensional non-linear a model 
with SU(n) symmetry and topological angle 8 = n, in the limit n + 0 [17]. Aprogramme 
to solve for the exact exponents was initiated in [18] by obtaining the amodels with 8 = 
n from associated SU(n) antiferromagnets (generalising the correspondence between 
ordinary SU(2) antiferromagnets and the O(3) non-linear amodel[4]. However, it was 
realised in [19] that the a models are in a massive phase at 8 = n for n 3 3; the only 
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massless case for physical values of n is n = 2. Thus the extrapolation of critical exponents 
to n = 0 requires the definition (and solution) of the models for fractional n. Unfor- 
tunately, although the antiferromagnetic models discussed here have the right quali- 
tative behaviour (critical for n s 2), they involve SU(n) variables transforming under 
the wrong representation to obtain the non-linear U models. The required rep- 
resentations have Young tableaux with n/2 columns and N rows where N+ (and n is 
even) [18].  Nevertheless, it is encouraging that the critical theory has been solved for all 
n in the simpler case of the fundamental representation and behaviour of the required 
type is obtained. 

3. A partial proof of equivalence 

3.1. Temperley-Lieb algebra 

The terms in the antiferromagnetic Hamiltonian obey the same Temperley-Lieb algebra 
[12] as do the terms in the Potts Hamiltonian. (For then = 3 case this was shown in [ 111.) 
This is easily shown using the fermion representation: 

HI2 = -v+1 "vIpV+ 2 a 3 2 P  

3'1 a31pv+ 1 y 3 1 s  = ay,v+ 1"VlS. 

(We drop the 1/n normalisation factor in our definition of Hfor  this sub-section.) Using 
the constraint of one particle (hole) per site we have 

Thus we obtain: 

= (v+l"vIpv+ 1Yvitls)(v+2"3*Pv+2y32h) = (ay,3+ 1 " v l a > ( @ y @ + 2 a v 2 a )  

= n v +  1 * v l b 3 +  2 a v 2 6  = nH12. 
Likewise: 

H 1 2 H 2 3 H 1 2  = ( ~ ' 1 " ~ 1 ~ ~ i l E ~ I ~ ) ( ~ ~ 2 2 a ~ 2 P ~ ' 2 y ~ 2 a ~ ' 2 & ~ 2  "> 
(3+3'v3a> = (6 , "V+  1 " 3 1 v ) ( ~ " ~ ~ , v + 2 n v 2 " ) ( v + 3 y 3 3 s )  

= ( v + " l v l " ) ( v + 2 * 3 2 Y ) ( Y + 3 Y Y 3 y )  = ( v + I " v 1 u > ( v + 2 a v 2 ' )  = H12. 

Together with [HI2 ,  H,,] = 0 ,  these comprise the Temperley-Lieb algebra obeyed by 
the terms in the n2-state Potts Hamiltonian. As we already discussed, the operators 
H,,,,, have the same dimension (n2) as those in the Potts Hamiltonian. These results 
may imply that the models are equivalent, with free boundary conditions. However, we 
do not know a proof of this. 

3.2. Four sites 

The equivalence can be checked explicitly for the case L = 2 ( four-site antiferromagnet), 
The following correspondence of states exists. 

Singlets: 

(Here we define the Hf eigen-states periodically, 1 A -k q )  = I A).) 
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n - I  

Figure 
sites. 

7. The Young tableau corresponding to the totally traceless states for a chain of four 

Adjoint: 
(TA)wpl"p',) = G I A ,  0) 

(whereA = 1, . . . , n2 - 1, and the TAs are some orthonormal basis of traceless matrices: 

tr TA = 0, tr TATB = S A B . )  

(T"),Pl',"p) = .\/;IIO,A) (2b) 

The remaining states are of the form T,p 1 " Y a), where the tensor T is completely 
traceless with respect to all pairs of upper and lower indices (corresponding to the Young 
tableau of figure 7). There are n 4  - 3n2 + 1 such states. In Potts language, these are 
states of the form 

lA, B )  - IB,A) and IA,A) - IB, B). 
There are q2 - 3q + 1 linearly independent states of these types. (It might appear that 
we should identify 

IA, B )  ???(TA),p(T"),al"p's) 
for some basis of traceless matrices, TA. However, this is not the case. Instead there is 
a mixing of the two sites: 

IC, 0) = 2 R C D , A B ( T A ) , P ( T B ) , " I " p ' a )  
A ,B  

for some tensor RCDsAB.) 
To show the equivalence of these states we just need to show that the anti- 

ferromagnetic and Potts Hamiltonians have the same action on the corresponding states. 
(The states are not orthogonal, but they are complete. Thus the action of H on the 

states completely determines the eigenvalues and eigenvectors; i.e. if we have 

HI%) = X h ] , / V , )  
I 

for some complete set of states 1 q!) in terms of some unsymmetric matrix, h ,  then an 
eigenvalue and eigenvector of h 

X h , u l  = Au, 
I 

gives &ul1 V I )  as an eigenvector of H with eigenvalue A . )  
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This equivalence is certainly true for the four-index tensor states; they are all annihil- 

(i) Singlet sector. First note that / O , O )  is an eigen-state of both Hf terms and 
ated by H .  Thus we just need to consider the singlet and adjoint sectors. 

ZA,14(A, -A) is an eigen-state of Hpwith eigenvalues -1  and -A exactly like I " , p p )  
for N12,  H34 and 1 L y p  p m )  for H23. Here we used: 

4 4 

Hp 2 lA,-A)=-(A/q) 2 J A + A ' , - A - A ' ) = - A  2 lA,-A).  
A = l  A2,A' A =  1 

The off-diagonal terms are 
4 

For the antiferromagnet we have 
(Hi2 + H 3 4 ) / m p P a )  = - (2/n)I", 'p) 
H231nnPp) = - ( A . / W p P , > .  

These equations are equivalent under the identification of states of equations (l), ( 2 )  
(ii) Adjoint states: Diagonal terms: 

HflOA) = - 1OA) H f l A ,  0) = - J A ,  0) 
H,Z* (A ,  A - A) = - AX (A ,  A - A). 

A 

These are the actions of (HI2 + H3J and on the corresponding states. Note that the 
tracelessness of the tensors TA implies that the term in H acting on the link contracted 
with TA gives 0. 

Off-diagonal terms: 

H f C  1 A, A - A) = - IO, A )  - 1 - A ,  0) 
A 

H ,  1 0 ,  A )  = H ,  1 -A,  0) = - ( A / ~ ) X  /A, A - A). 
A 

Again these are the corresponding equations using: 

H12(TA)p " I y  - ( l / n ) ( T A ) p  , a y  E ./) = - ( l / n ) ( T A ) p  ' 1  E E 1 C )  y )  

etc. Thus we have established that all the states are identified as above. 

3.3. Arbitrary L in the SU(n) singlet sector 

We now consider a chain of arbitrary length. We only consider the SU(n) singlet sector 
for simplicity but the arguments can be extended to higher representations. A general 
singlet state corresponds to a valznce-bond diagram. Regarding the sites as being paired, 
2i - 1,2 i ,  each pair is either joined by two bonds to other pairs or else is self-contracted. 
If we follow the paths between connected pairs they must eventually close since they 
cannot terminate. Thus we obtain closed loops of pairs of sites; a self-contracted pair 
corresponding to a loop containing only one pair. Let us focus on the set of sites forming 
a loop. Reordering them, we can write this part of the state as 

In Potts language, a self-contracted pair corresponds to a state IO), and a longer closed 
loop of length m to 

I w 2 * 2 m 3 " 3 m 4 .  . . a m w l ) .  

E ' l A l  , A *  , . . . A m )  
where the sum is over all Ai subject to the constraint 
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Figure 8. The action of H12 on a state containing a closed loop of pairs of sites. 

Figure9. The action of HZm Z , n r l  on a state with sites 2m and 2m + 1 in different closed loops. 

m 

2 Ai = 0. (3) 
r = l  

All SU(n) singlet states have the same squared amplitude, nL. The Potts states have a 
squared amplitude qL!2-i where lis the number of loops (since one A index is constrained 
for each loop). Thus, we claim the states are equivalent if the Potts states are multiplied 
by a factor n[. 

Diagonal terms: 
H f ) O )  = -410) 

We may simply redefine the summation variables: A1 + AI + A, AI+ A, - A, without 
interfering with the constraint of equation (3). Thus 

Thus we reproduce the effect of H acting on a link containing a valence bond, regardless 
of whether the link is of 2i - 1,2i  type or 2i, 2i + 1 type. The off-diagonal terms are 

, A m )  = - x’10, A I ,  . . . 
where now the sum is restricted by 

m 

x A i = O  
i = 2  

This corresponds to the valence-bond transition diagram of figure 8. We obtain the 
correct transition amplitude of 1/. due to the difference in normalisation of the two 
Potts states: 

2 IA1A2,. * .  > A m > A m + l , A m - + 2 , .  3 .  , A m + n )  
m + n  

H P m , m + l  x 
z A , = O  z . A , = O  

, = 1  , = m + i  

= -(Ah) m t n  IA1A2,. * .  , A r n > A m + l , A m + ~ > * . .  > A m + n ) .  

A,=O 
, = 1  

This corresponds to the valence-bond transitions of figure 9. 
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Thus we have proven rigorously the equivalence of the two Hamiltonians in the 
singlet sector. That is sufficient to establish most of the conclusions discussed above 
about the SU(n) antiferromagnets, since the ground states are expected to be singlets, 
and for fractional n we only defined the model in the singlet sector. 

These models were very recently shown [20] to be equivalent to certain integrable 
n-state vertex models and results were presented on the correlation length and gap. 
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